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Abstract
Curcumin, a concentrated extract of the herb, turmeric, is a
widely used medicinal agent purported to deliver significant
anti-inflammatory and other pharmacological activities. As
much as curcumin presents a narrower range of
pharmacological activity over the whole herb, the extract is
still comprised of multiple curcuminoid constituents that
contribute to a polypharmacology. Curcumin has been
administered successfully in clinical trials to treat
depression; Alzheimer's and other neurological diseases;
autoimmune and auto inflammatory disorders; and various
types and stages of cancer with reasonable success but also
with conflicting reports. Upon meta-analysis of the plethora
of curcumin-related research it is evident that the
pharmacology of this extract is not fully understood.

The naturally occurring, highly homologous curcuminoid
analogues are assumed to partake in similar and additive
pharmacological events due to their common structural
features. However, a perspective shift is presented to
feature their electrochemical and structural differences and
highlight the potential for each curcuminoid to also exhibit
unique pharmacology that is distinct from the others. This,
in part, is shown to help explain curcumin's
polypharmcology when administered to treat multiple
diseases that manifest with pathological features and
symptoms, nevertheless, that are quite diverse.

A full review explains how highly hydrophobic and
extremely reactive curcuminoid chemistry can still be
administered orally; is bioavailable despite conflicting
reports that it is not; and delivers efficacious pharmacology
systemically as a direct function of the parent curcuminoid
molecules and in an additive manner through the
accompanying auto-oxidative degradation by-products of
the parent curcuminoids.

Keywords Anti-inflammatory; Curcumin;
Polypharmacology; Curcuminoid; Turmeric; Cancer; Alzheimer's
disease

Introduction
Curcumin (diferuloylmethane) is a major active constituent of

turmeric (Curcuma longa) [1] with an expansive pharmacology
including anti-inflammatory [1], anti-carcinogenic [2], wound
healing [3] and antibacterial [4] to name just a few features. Its
safety is well established by centuries of use in food and
traditional medicine [5-7]. Subcellular signalling proteins such as
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-kB) [8], c-Jun N-terminal kinase (JNK) [9], Protein Kinase C
(PKC) [10], AKT and mechanistic target of rapamycin (mTOR)
signalling [11,12], and mitogen-activated protein kinases
(MAPKs) [13] have made a sizeable list of curcumin’s
pharmacological targets that continues to evolve. Additionally,
these targets are central to the pathology of diseases that are
prolific in society today such as neurological disease [14,15],
autoimmunity [16,17], cardiovascular disease [18,19] and even
cancer [20]. This all makes for a rather exciting story for
curcumin as a potential medicinal agent.

The very fact that the list of targets and mechanisms of
activity by curcumin continues to grow is, itself, demonstrative
of our incomplete understanding of the fundamental underlying
mechanism by which curcumin pharmacology modulates disease
pathology. Studies have shown curcumin to inhibit growth
factors and growth factor receptors as well as the downstream
signals including PI3K and extracellular-signal activated kinase
(Erk); and oncogenes such as c-jun and c-myc [21,22]. The
extract is shown to inhibit expression of epidermal growth factor
receptor (EGFR) and erythroblastosis oncogene B (ErbB2) [23];
inhibit enzymes such as cyclooxygenase (COX) and lipoxygenase
(LOX)[24-27]; facilitate transcription factors such as nuclear
factor erythroid 2-related factor (Nrf2) [28] that can contribute
to endogenous antioxidant status and protect cells from
oxidation; while it inhibits activator protein – 1 (AP-1) and tumor
necrosis factor α (TNFα)[29,30]. Curcumin is shown to inhibit
cytokines such as interleukins 1, 2, 6 and 8 [25,30-32]. The
extract is also shown to suppress Interleukin (IL)-12 in
macrophages [33] while promoting the anti-inflammatory IL-10
[34]. How is all this possible and how can this be harnessed and
controlled?

Curcumin comprises a subset of active constituents. The three
main naturally occurring curcuminoid analogues found within
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the curcumin extract are diferuloylmethane (curcumin I),
desmethoxycurcumin (curcumin II) and bis-desmethoxycurcumin
(curcumin III) [35,36] as seen in Figure 1. They typically exist
naturally in proportions that range between 65-80% curcumin I,
10-25% curcumin II and 0.2-3.0% curcumin III [37]. Curcumin
delivers a polypharmacology that exhibits a narrower range of
activity than the whole herb [38,39]. However, the curcumin
extract is certainly not maximally selective as it is still delivering
multiple active constituents each potentially exhibiting a
polypharmacology of their own.

Figure 1: Comparing curcuminoid structure with steroid
hormone homology.

There is yet another component of the pharmacology that
may be contributing to curcumin’s polypharmacological nature.
The sub-constituent curcuminoids readily give rise to auto-
oxidative degradation products [40-42], some of which we know
to exhibit pharmacological activity that we may have attributed
to the curcuminoids in the past. Despite the conflicting findings
on these curcuminoid by-products, they may be playing a
monumental role in the pharmacology of this remarkable
extract; a role that needs to be viewed with a more focussed
lens.

Clinical Benefits of Curcumin
Since long ago, oral dosing of curcumin with as little as 20 mg

three times daily has been shown to improve acute and chronic
hepatitis [43]. Curcumin is a potent cholegogue inducing gall-
bladder contraction and bile elimination [44] conducive to
bladder stone management. However, the more recent
understanding of curcumin’s anti-inflammatory pharmacology
and what this means in the context of disease management has
elevated interest in the extract as a potential treatment for
many modern epidemics. Curcumin is also shown clinically to
enhance cytotoxicity of various drug-resistant strains of cancer
[45].

In clinical trials patients with various cancer-related risks
including bladder cancer, cervical cancer, intestinal metaplasia
and oral leukoplakia were treated with systematically escalating
doses up to 8000 mg daily of curcumin for three months [46].
Results were indicative of a significant anti-cancer effect by the
curcumin treatment with relatively little to no toxicity. In murine
models curcumin is also shown to ameliorate functional and
structural abnormalities associated with cancer drug cisplatin-
induced neuropathy [47].

In the treatment of orbital pseudotumors curcumin produces
significant positive results. After following these patients for as
long as two years at three month intervals, four patients
recovered completely among five who stayed in the study to
completion. One patient experienced complete regression but
with some limited movement as a residual symptom [48]. The
treatment of psoriasis by oral curcumin administration is shown
to produce an excellent therapeutic outcome in two patients
encouraging the need for larger controlled trials [49]. Topical
application of curcumin preparation shows curcumin treatment
to produce a more profound resolution than calcipotriol or non-
treated (control) patients with various degrees of psoriasis [50].

A twenty-four week double blind placebo-controlled study
resulted in an inconclusive position on curcumin’s effects on
Alzheimer’s patients [51]. Curcumin use did show signs of β-
Amyloid changes in serum indicative of β-Amyloid
disaggregation and a tendency towards fewer adverse events for
patients using curcumin. However no improvement in cognitive
performance in the curcumin group over controls is established.
However, since the control group did not shown cognitive
decline during the period of the trial, the study design will need
to be modified to be able to better evaluate these outcomes;
better controls, larger groups and longer trials are expected
requirements acknowledged by the authors.

However, researchers have not given up on the extract when
it comes to amyloidogenic diseases. In vivo murine studies show
that curcumin does cross the blood brain barrier [52,53] and
binds to amyloid plaques when orally fed or directly injected into
the carotid artery [54]. When coupled to the known in vitro
results associated with Alzheimer’s disease biomarkers these
findings are suggestive of efficacy against Alzheimer’s pathology
[55]. Other studies show curcumin improves cognitive function
in patients with Alzheimer’s disease [53]. More research is
required to further define curcumin’s clinical efficacy and
mechanisms involved in the framework of Alzheimer’s
pathology.

Curcumin is shown to deliver anti-depressant like activity
similar to that of fluoxetine and imipramine [56] and the
mechanism might involve increasing brain derived neurotrophic
factor (BDNF) [57]. On the other hand curcumin’s anti-
depressant-like activity maybe a function of inhibitory activity
on IL-6 and IL-1 [35,58] since dysregulation of these cytokines
and the systemic inflammatory activity that can rise from this
may contribute to depression pathology [59,60].

Curcumin is shown to inhibit p300-HAT to improve cardiac
hypertrophy and heart failure in animal models [61,62].
Curcumin delivers better results than diciofenac sodium in a
recent study of patients with active rheumatoid arthritis
comparing these therapies [6,63]. Curcumin appears to correct
cystic fibrosis transmembrane conductance (CTFR) defects
associated with cystic fibrosis (CF) in murine models [64].
Curcumin administration stimulates muscle regeneration after
traumatic injury [65]. Curcumin improves COPD-like airway
inflammation [66].
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All those in a small group of five ulcerative colitis patients
improved using 550 mg curcumin twice daily as treatment for a
month followed by a month of three daily 550 mg doses [7].

Curcumin pharmacology looks promising to say the least but
these remarkable results are also in conflict with similar studies
showing lack of success in clinical and preclinical models with
curcumin treatment [67] such as in depression models where
curcumin’s effects are found to not be significant [68]; where in
other independent studies of CTFR (CF) defects curcumin’s
benefits were not repeatable [69]; and in research using high
curcumin doses to treat inflammatory conditions such as
rheumatoid arthritis patients experienced improvements as
much as but not more than those receiving phenylbutazone [7].

Curcumin pharmacokinetics

Curcumin bioavailability

Despite the abundance of experimental and anecdotal clinical
evidence demonstrating the health benefits of orally routed
curcumin, limited to no serum curcumin is found in test subjects
even at extremely high dosing that exceeds 10,000 mg daily
[70,71]. The reasons for the low tissue or serum availability
appear to be due to multiple compounding factors including low
bioavailability [72] and expeditious metabolic degradation [73]
that causes rapid elimination of the curcuminoids [72]. The
naturally occurring curcuminoid analogues are highly
hydrophobic [74,75], a characteristic thought to play a major
role in bioavailability [72]. Overcoming the hydrophobic
characteristics of the curcuminoids resolves only one of the
challenges, however. There are other curcuminoid issues related
to pharmacokinetics that are outstanding and are likely far more
central to the understanding and efficacy of curcuminoid
pharmacology than the bioavailability limitation.

The low bioavailability of curcumin is assumed due to the lack
of serum curcuminoids [70] and the common excessive efflux of
some curcumin preparations in fecal matter upon oral
administration [76]. In comparison with intraperitoneal
administration of pure curcumin extract which excludes the
tumerone fraction, 75% of orally administered curcumin extract
was excreted in feces with more than 10% found in bile [76] in a
mouse model. In human patients, Cheng et al report that even
with 8000 mg of oral curcumin administered daily, serum
concentrations were found to be 1.77 +/- 1.87 microM [46]. In
colorectal patients taking up to 3600 mg of curcumin orally daily
neither curcumin nor its metabolites were found at quantifiable
levels in plasma, blood and urine [77]. In a human Phase I
clinical trial, Sharma et al found curcumin and its metabolites in
plasma in the 10 nM range after oral dosing as high as 3600 mg
daily [70]. In the treatment of pancreatic cancer using orally
administered curcumin plasma curcumin levels are found to
range between 22-41 ng/ml [71].

Poor curcumin/curcuminoid bioavailability is thought to be
caused by the highly hydrophobic property of the phenolic
compounds [75]. Many strategies have been applied to
overcome the hydrophobicity of curcuminoids in an attempt to
improve bioavailability such as interacting them with beta-casein
(micellar casein) to improve solubility in aqueous mediums [78];

encapsulation of curcuminoids in hydrophobically modified
starch [79], and phosphatidylcholine interactions with
curcuminoids to enhance bioavailability and delivery [80,81].
Administration of complexed curcuminoid-phosphatidylcholine
is in fact shown to deliver a higher serum payload of curcumin
over curcumin powder alone [82]. However, more detailed
studies might be needed to determine if the incremental serum
curcuminoids found with this reacted curcuminoid complex is a
function of improved solubility and bioavailability. Could the
improved survival of serum curcuminoids be a function of
recipient-induced alteration in hepatic enzyme activity that may
reduce the clearance rate of curcuminoids from blood? In
addition, feed type [83], fiber content [84] and many other
factors can also play into gastric emptying rate [85]
gastrointestinal transition rate and macronutrient digestion and
absorption [86]. This all influences drug transition rate and
bioavailability as well and are not always fully accounted for in
these studies.

The bioavailability limitation of curcumin, however, may be
also overstated because studies also show that curcumin can
efficiently find its way into serum at concentrations that are
rather significant [51]. Thirty-four subjects of a six-month trial
using powdered curcumin versus encapsulated curcumin
presents a different bioavailability story. This study shows a
mean plasma curcumin level of 490 nM amongst both curcumin
groups but an interestingly higher (940 nM) level for the
curcumin capsule group over the group fed curcumin powder at
the daily dose of 1.0 gram daily. A group using 4.0 grams daily
was also evaluated but serum curcumin results with this higher
dose was not significantly higher.

However, it’s interesting to note that while curcumin levels
differed, levels of tetrahydrocurcumin, ferulic acid and vanillic
acid did not differ between patients using powdered curcumin
and those using capsules. The powder form could be performing
less effectively due to the need to mix it in aqueous or other
solutions that allow the auto-degradation process to start in on
curcuminoid degradation long before it even enters the lumen.
Interestingly, serum levels of curcumin could only be detected in
the presence of glucuronidase inhibitor [51]. Here we have a
clear indication that bioavailability of curcumin can be functional
and maybe, the serum limitations are more attributable to
shortfalls in curcumin formula design and post absorption
modification and degradation that play a larger role in serum
survival. Figure 2 presents a schematic that highlights multiple
sources of curcumin/oid degradation that could affect curcumin
“apparent” bioavailability. This degradation starts with the type
of curcumin delivery form or formula and carries through to the
final reagents and solvents used in analysis.

Curcumin metabolism

It is well understood that metabolic degradation of curcumin
is rapid and efficient. In the preliminary study by Baum et al [51]
it was determined that serum curcumin could be increased
within 1.5 hours of oral administration with food to 250 nM and
to 270 nM by four hours with water only. By twenty-four hours
post-administration serum curcumin levels fell to 60 nM. No
significant differences were found between the groups taking
1.0 gram curcumin daily versus the group taking 4.0 grams daily.
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This study proves to be one that highlights the true potential of
curcuminoid bioavailability; it can be viable for a properly
formulated curcumin treatment. Degradation and metabolic
modification, on the other hand, may be the more difficult
challenge. In fact, in this same study, at 2.5 hours after oral
curcumin administration serum ferulic acid is found to be 110
+/- 20 nM, vanillic acid is 50+/-20 nM, total curcuminoids found
to be 1100+/-260 nM, tetrahydro curcumin is found to be
440+/-100 nM, and no vanillin is found.

Enzymatic metabolism of curcuminoids starts in the intestinal
lumen and is quickly followed by hepatic enzyme activity [87,
88]. Although it is not clear whether Phase I metabolic enzymes
such as the P450 CYPs are directly involved in curcuminoid
metabolism, their influence may be indirect as explained further
here. Once in the blood, for example, curcuminoid survival is
prolonged or protected by serum albumin [89] which likely
forms micellar systems with the systemic curcuminoid. Cationic
micelles of curcuminoid [90], for instance, which can be
achieved with beta casein are not only said to improve
bioavailability but also protect the curcuminoids from premature
degradation [78]. Binding of curcuminoids in vitro to bovine
serum albumin (BSA), likely in the protein’s hydrophobic pockets,
results in a curcumin-BSA complex with improved curcumin
stability [91]. In fact, curcumin solubility is increased as much as
10-fold in the presence of BSA [92].

In vivo, curcuminoids are quickly converted to
dihydrocurcumin, tetrahydrocurcumin, hexahydrocurcumin, and
hexahydrocurcuminol. These metabolites are quickly further
subjected to glucuronation and sulfation to form curcumin
glucuronide, curcumin sulfate, dihdrocurcumin glucuroside,
tetrahydrocurcumin glucuronoside, and hexahydrocurcumin
glucuronoside [73,87,93,94].

This likely involves Phase II metabolic enzymes - UDP-
glucuronosyltransferases (UGT) and Sulfotransferase enzymes
(SULT) [95]. However, the literature is not black and white in this
context. To throw another curve in the context of metabolic
degradation it must be considered that curcumin metabolic
degradation and elimination is shown in some studies to play
out differently in the human versus rat model.

The human intestinal and hepatic cytosol is more likely to
conjugate curcumin and produce the tetrahydrocurcumin
metabolite in place of curcumin more abundantly than the rat
model does [96]. What this means to total pharmacological
potency is unexplored to date but what has been a problem up
until now is the direct extrapolation from murine models to
human models with lack of scientific support. More work needs
to focus on unravelling this mystery.

There is no strong evidence to show that curcumin is subject
to metabolism by P450. However, the Phase I P450 and the
Phase II enzymes tend to aggregate at the membrane and
influence each other. P450 (CYP), for instance, interacts
intimately with UDP-glucuronosyltransferases (UGT) responsible
for glucuronidation to form heteromers at the plasma
membrane [97] that result in their competition for substrates
and down- and up-regulation of activity [97]. It is possible that
any substance or influence that affects P450 activity, such as

changes in membrane phospholipid constitution, may indirectly
influence curcumin’s metabolism [98]. Phosphatidylcholine in
curcumin complexes that has been shown to improve solubility
and bioavailability of curcumin [81] may also affect P450’s since
membrane phosphatidylcholine is thought to be the anchoring
phospholipid for at least some P450 enzymes such as 2B4 [99].

Failure to detect functional levels of curcumin in the plasma
after a steady oral loading period or administration by other
route may also be attributed to instability and non-enzymatic
degradation of the curcuminoids. Various human and rat studies
demonstrate a short half-life for the curcuminoids [100,101].
Researches have shown that curcumin is more stable in
solutions at pH<7.0 while it tends to be less stable in
physiological pH of 7.8 or more [102] characteristic of the distal
small intestine.

The curcumin non-enzymatic degradation products frequently
reported are ferulic aldehyde, trans-6-(40-hydroxy-30-
methoxyphenyl)-2, 4-dioxo-5-hexenal, feruloyl methane, ferulic
acid and vanillin [102]. Ferulic acid and vanillin, are considered
very small phenolic molecules with molecular weights of 151.15
g/mole [103] and 66.8 g/mole [104] respectively. They are
soluble in aqueous solution and far more stable than the
curcuminoids, themselves, in the biological medium [105-107].

The status of these non-enzymatic auto-oxidative degradation
products is also in question and in conflict in the literature as the
ones expected to be the major products in the past, vanillin and
ferulic acid [42], are said to more recently be preceded by a
bicyclopentadione product or other by-products that may not
have yet been precisely identified [102,105,108,109]. Too much
conflicting data has been presented in this context and although
the multiple view-points are great to see for meta-analysis it
must be considered that these conflicting positions on the status
of the degradation by-products could also be a function of the
variable conditions being used to study the curcuminoids.

Variable pH, temperature, serum protein and other conditions
that, if even mildly varied, result in varying the stability,
degradation dynamic and by-product yield.

These variables could factor into the equation at multiple
levels when it comes to in vitro work; but even with in vivo work
the feed types, curcumin specifications and animal condition all
play a changeable role in the outcome.

Analysis of the blood work extracted including reagents used
to treat final yields also influence the stability of the retained
target curcuminoids; biochemicals we now know to be
extremely vulnerable to degradation. All of these factors as
shown in Figure 2 contribute to the variable results and
inconsistencies we see in the literature. Somewhere in all this
conflict, however, treatment with the right curcumin therapy
successfully delivers relief to patients of many diseases.

Ultimately, we need to pin down the pharmacokinetics and
isolated pharmacology of the curcuminoids and their
downstream by-products in order to eliminate inconsistencies
and produce a reliable curcumin-treatment.
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Curcuminoids or their Degradation
Product?

The enzymatic metabolism of curcumin is shown in some
studies to reduce curcumin’s pharmacological potency
significantly [110,111]. However, other studies indicate that at
least one of these metabolic by-products could be contributing
to curcumin’s polypharmacology in tissues [112].
Tetrahydrocurcumin is purported to deliver a significant anti-
inflammatory pharmacology [110-113]. In fact, more recent
studies are pointing to this reduced derivative of curcumin
having antioxidant activity and antihyperlipidemic effects at
least as potent as curcumin [114]. Tetrahydrocurcumin is shown
in some studies to perform well as an inhibitor of NF-kappa-B
and protector of oxidative damage after ischemic episodes
[115]. While it is shown to deliver more anti-inflammatory

activity than curcumin in a carrageenan-induced murine
inflammatory model [116] it performs not nearly as well as
curcumin in other studies [117]. Other studies again, show
varied activity with curcumin performing better than
tetrahydrocurcumin on targets like COX-2 inhibition [118].

Aside from metabolic degradation as a factor altering
curcuminoid pharmacology, the curcuminoids can exist as
different tautomers - the enol and keto tautomers, [119,120] as
shown in Figure 3. The keto form predominates in a solution of
pH 3-7 while at a pH above 7.8 the enol form predominates in
solution [121]. The enol form (>pH 7.8) serves as an electron
donor while the keto form (pH 3-7) serves as a hydrogen atom
donor; although both forms can serve as antioxidant.
Nevertheless, the environment in which the curcuminoid exists
influences its electrochemical properties factoring, yet again, as
another source of pharmacological variability.

Figure 2: Curcuminoids are inherently vulnerable to degradation by various mechanisms including UV light (photo) degradation
exposure [150]; in aqueous solution of higher pH [151], exposure to buffers, assay reagents and HPLC solvents and their distinct
pH [152].

Figure 3: Curcumin can exist in different tautomers - the enol and keto tautomers.

The story with regards to the non-enzymatic auto-degradation
products of curcumin is even more colourful and adds even
more mystery. Curcuminoids also undergo non-enzymatic auto-
oxidative degradation and as we’ve seen this is more likely to
occur at pH>7.0 [102]. It was shown that as much as 90% of
curcuminoids are degraded within 30 minutes in a serum-free
medium at pH 7 at 37°C [122]. Even in the presence of serum,
50% of curcumin is degraded to its degradation by-products
within eight hours [102]. The true nature of this degradation
yield is still not conclusively understood.

Research by Martelli et al show that curcumin activates the
transient receptor potential cation channel subfamily V member
1 (TRPV1) also known as the vanilliod receptor 1. This receptor is
the target of vanillin, a degradation product of curcumin. By this
mechanism vanillin and/or curcumin could be inducing
symptomatic relief of Dinitrobenzene sulfonic acid (DNBS) -
induced colitis in mice [123]. Multiple studies point to NF-kappa-
B inhibition by curcumin and this being the root activity that
results in subsequent IL-1, IL-6 and IL-8 inhibition [124-126].
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Similarly, vanillin can also inhibit NF-kappa-B and caspase-1
[127]. COX is inhibited by vanillin [127]. In fact, vanillin’s effects
are COX-2 specific delivering the beneficial pharmacology
associated with nonsteroidal anti-inflammatory drugs.
Interestingly, curcumin is shown to inhibit COX as well [128,129].
Kim et al also show that vanillin protects rat neurons from
oxidative stress [130]. Curcumin does the same by inducing
expression of antioxidant defensive genes through Nrf2
activation [28, 131].

Ferulic acid, another curcumin degradation product, displays
pharmacological activity similar to curcumin’s as well. Studies
demonstrate that ferulic acid supplementation can facilitate
hypotension through NO-mediated vasodilation [132]; a result
also seen with curcumin administration [133]. Ferulic acid is
shown to have significant antitumor activity [134] as does
curcumin [135]. Ferulic acid is shown to inhibit NF-kappa -B
[136]. Curcumin has been shown to destabilize preformed β-
amyloid protein including inhibition of soluble oligomer and
fibril aggregation to subsequently or also independently reduce
associated neurotoxicity by these proteins [54,137-141]. Ferulic
acid is shown to have similar activities in vitro
[130,139,142,143].

Similar pharmacological activities of curcumin and its
oxidative degradation products strongly suggest a contribution
by curcumin’s auto-oxidative degradation products to curcumin
pharmacology in vivo. This may explain the therapeutic results
with curcumin administration despite low bioavailability or more
accurately low serum levels of the curcuminoid analogues. The
fact that we experience efficacious results with oral curcumin
administration with or without the identification of significant
serum curcuminoid concentrations supports the notion that
vanillin, ferulic acid and/or other degradation products of
curcumin may be responsible at least partially for the clinical
benefits of curcuminoids.

The variety of experimental models used to investigate
curcumin includes in vitro and in vivo studies using various
representations of turmeric and the common extract, curcumin.
Curcumin’s pleiotropic properties certainly make it a versatile
molecule. The question is whether this pleiotropy is a function
of one curcuminoid analogue on multiple targets, the naturally
inherent three curcuminoid analogues, the degradation
products, or all of these factors? A better understanding of the
complex nature of this activity can help us decode and identify
the active components contributing to the polypharmacology.
With this mapping, improved selectivity by curcumin-based
drugs can be established and improved indication-specific drug
designs with improved reliability and repeatability can be
created. As we have it today, too many variables are at play.

Conclusion
One of the challenges faced today with respect to curcumin

acceptance in mainstream medicine is its polypharmacology or
lack of clear cellular targeting. Drug target selectivity is central
to allopathic drug design for reasons that are valid [144,145].
However, an emerging drug paradigm that centers on
polypharmacology [145,146] to produce a synergistic

therapeutic outcome is gaining some momentum for reasons
that may also be valid. In essence, polypharmacology as a
treatment model is already established in mainstream allopathic
medicine and is in use to treat many complex disorders today
including autoimmune disease [147,148] and especially cancers
[146,149]. Interestingly, curcumin falls into this class of drug
perfectly; however, in order to better understand the entire
scope of this polypharmacology by curcumin much more work
needs to be done.

It is evident that curcumin extracts are made up of multiple
naturally occurring curcuminoid analogues that must be studied
in isolation in order for the distinct pharmacological features for
each to be better defined. This may help formulators produce
condition-specific products using the curcuminoid analogues
with greater precision. In addition, it must be made very clear
whether we have an influence in the in vivo model by the auto-
oxidative by- products of curcumin or any of the enzymatic
degradation products such as tetrahydrocurcumin. The level of
contribution not only as constituents to serum bioactives but
more accurately the tissue distribution of these potentially
active degradation products must be defined.

Serum curcumin levels appear in the literature to not
correlate well with efficacy of curcumin-based treatment
protocols. Despite low to no serum curcumin upon oral
administration in some studies efficacy against various human
diseases from cancer to neurological has been well documented
[72]. However, as we’ve seen some studies show that serum
curcumin levels can be increased significantly with properly
designed curcumin therapies. In addition, as serum
curcumin/oid levels rise, in just hours the curcumin auto-
oxidative degradation by-products can accompany the parent
molecules in systemic circulation to contribute synergistic
and/or additive pharmacology. This cannot be discounted.

Other challenges seem to compound the curcuminoid mystery
including the lack of curcumin extract standardization. Curcumin
extracts are notoriously comprised of varying proportions of the
naturally inherent curcuminoid analogues. This in itself produces
another layer of inconsistency when testing one curcumin
standard against others. Lastly, the reports of the curcuminoid
pharmacokinetics in the literature are conflicting and this is
expected to be a function of the varying conditions influencing
degradation of the variable curcuminoid proportions in multiple
additive ways starting with formulation design and delivery form
of the curcumin-therapy. This variability continues based on
transition time and oxidative status in the lumen to interactions
of different biochemicals used in the analysis of blood work as
portrayed in Figure 2. Our very attempts to isolate, extract and
assay these compounds produces degradation vulnerability that
impairs accurate evaluation of curcumin/oid pharmacokinetics.

Everything from formulation, delivery form, Intestinal
transition rate, diet, serum extraction method and serum
storage and analysis can play a role in altering perceived
bioavailability and serum stability. These represent multiple
sources of variance and conflict from researcher to researcher.

In fact, we believe the very in vivo pharmacologically active
biochemicals have been grossly missed in the past but have not
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been considered even in tissue distribution analysis – an
endeavor that is so easily measured if one accepted the auto-
degradation by-products as a plausible source for, at least, part
of the curcumin/oid pharmacology. These by-products are
relatively stable in aqueous solution where the parent
curcuminoids are not. We believe this to more than just
plausible; it is cautiously expected to be highly likely.

The future requires a completely different outlook; first off by
accepting polypharmacology or Network Pharmacology as a
viable drug model by which the accepted Systems Biology is
addressed with a pharmacological model that fits it like a glove.
Secondly, the possibility that the degradation by-products are
playing a significant role in one way or another in the expansive
curcumin polypharmacology should be seriously investigated.
The role that tetrahydrocurcumin might be playing must also be
considered. Tissue distribution analysis must be employed with
this objective in mind; and with clear consideration of the
degradation potential inherent in the analytical process, itself.
After this dust settles we’ll get to a starting line and determine
what it is we are really studying and with this curcumin may get
the credit it deserves even in mainstream medicine.
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